Foundations of Discrete Mathematics COT 2104

Practice 7

1. Write the following sum without using Σ and evaluate.

a)
$$\sum_{k=-1}^{\infty} (2k^2 - k + 1)$$

- 2. Use mathematical induction to prove the truth of each of the following assertions for all $n \ge 1$.
 - a) 8ⁿ 3ⁿ is divisible by 5.
 b) 10ⁿ⁺¹ + 10ⁿ + 1 is divisible by 3.
- 3. Use mathematical induction to establish the following formula.

a)
$$\sum_{i=1}^{\infty} (2i-1)(2i) = (n(n+1)(4n-1))/3$$

4. Give recursive definitions of the following sequence:

a) 4, 1, 3, -2, -3, 5, -7, 12, -19, 31, ...

- 5. Solve the recurrence relation $a_{n+1} = 7a_n 10a_{n-1}$, $n \ge 2$, given $a_1 = 10$, $a_2 = 29$.
- 6. Express the generating function of the following sequence as a polynomial

a) 1, -2, 3, -4 ...

7. The first two terms of a sequence are 6 and 2. If the sequence is arithmetic, find the 27th term and the sum of the first 30 terms.