Foundations of Discrete Mathematics COT 2104

Practice 7

1. Write the following sum without using Σ and evaluate.
a) $\sum\left(2 k^{2}-k+1\right)$
$\mathrm{k}=-1$
2. Use mathematical induction to prove the truth of each of the following assertions for all $\mathrm{n} \geq 1$.
a) $8^{n}-3^{n}$ is divisible by 5 .
b) $10^{\mathrm{n}+1}+10^{\mathrm{n}}+1$ is divisible by 3 .
3. Use mathematical induction to establish the following formula.
n
a) $\quad \sum(2 i-1)(2 i)=(n(n+1)(4 n-1)) / 3$
$\mathrm{i}=1$
4. Give recursive definitions of the following sequence:
a) $4,1,3,-2,-3,5,-7,12,-19,31, \ldots$
5. Solve the recurrence relation $a_{n+1}=7 a_{n}-10 a_{n-1}, n \geq 2$, given $a_{1}=10, a_{2}=29$.
6. Express the generating function of the following sequence as a polynomial
a) $1,-2,3,-4 \ldots$
7. The first two terms of a sequence are 6 and 2 . If the sequence is arithmetic, find the $27^{\text {th }}$ term and the sum of the first 30 terms.
